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In this work we study the nonlinear dynamics of the static and the driven ellipse. In the static case, we find
numerically an asymptotical algebraic decay for the escape of an ensemble of noninteracting particles through
a small hole due to the integrable structure of the phase space of the system. Furthermore, for a certain hole
position, a saturation value in the decay that can be tuned arbitrarily by varying the eccentricity of the ellipse
is observed and explained. When harmonic boundary oscillations are applied, this saturation value, caused by
librator-type orbits, is gradually destroyed via two fundamental processes which are discussed in detail. As a
result, an amplitude-dependent emission rate is obtained in the long-time behavior of the decay, suggesting that
the driven elliptical billiard can be used as a controllable source of particles.
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I. INTRODUCTION

Billiards belong to the most widely studied class of
Hamiltonian systems. They possess many of the classical and
quantum mechanical properties of complex dynamical sys-
tems �1–3�. Moreover, models of statistical mechanics can be
reduced to billiards �4�. For example, one of the simplest
cases of billiards, particles inside a rectangular box, is an
idealization of the physical situation of nucleons confined
inside a nucleus �5�. Mathematically rigorous studies of bil-
liards go back to the early 1970s, e.g., Bunimovich proved
that stadia are ergodic �6�, using concepts developed by Si-
nai. In recent years, a renewed interest in billiards has come
up, due to the possibilities of realizing them experimentally,
for example by using ultracold atoms confined in a laser
potential �7�, microwave billiards �2,8,9�, or mesoscopic
quantum dots �10�. Even for the design of directional micro-
lasers, billiards are relevant �11�. Besides this, interesting
theoretical results have been obtained, including a justifica-
tion for a probabilistic approach to statistical mechanics
�4,12�. Very recently, it has been shown �13� that a connec-
tion exists between billiards and one of the major unsolved
problems in mathematics, the Riemann hypothesis: the au-
thors of �13� found an analytic expression for the escape rate
of a circular billiard with two holes, involving a sum over the
zeros of the Riemann � function.

A natural generalization of billiards with a static boundary
is to apply a driving law to the billiard wall. For instance,
Bohr’s liquid drop model from nuclear physics can be re-
garded as a time-dependent billiard �14�. For this simple-
looking model, many questions still remain open �15�. An-
other example is in plasma physics, where time-dependent
billiards represent models for acceleration of particles in a
magnetic bottle �see �16� and references therein�. In conclu-
sion, there are many branches of physics in which billiards,
specifically time-dependent billiards, serve as models for
more complex systems, capturing the key features and be-
havior of the original problem.

Ultracold atoms in a billiard formed by beams of light
allow for the possibility of generating arbitrary geometries
and changing them in time, as well as varying parameters
such as beam width, softness of the potential, etc. in time. Of
special interest is the possibility of probing the dynamics by
analyzing the escape rates �7,17–20�, which has up to date
been performed only for static billiards. Introducing noise
and decoherence and studying the role of quantum and
many-body effects are further intriguing goals �7�.

Regarding time-dependent billiards, there exist several in-
vestigations in the literature �16,21–28�. A crucial question
for these systems is whether Fermi acceleration occurs or
not. This is examined in Refs. �21–24� and very recently in
Ref. �27�. In �21� it is shown that, when using smooth forc-
ing functions, the existence of invariant spanning
Kolmogorov-Arnold-Moser curves in phase space limits the
energy gain of the particles, whereas nonsmooth forcing
functions, especially random oscillation, lead to unbounded
energy gain; see also Ref. �27� and references therein. In Ref.
�22�, the authors conclude with the hypothesis: “A random
element in a billiard with a fixed boundary is a sufficient
condition for the Fermi acceleration in the system when a
boundary perturbation is introduced.”

Within the existing studies of classical time-dependent
billiards only little emphasis is put on systems with a finite
horizon and �to our knowledge� none on the corresponding
escape rates. Very few works deal with the time-dependent
ellipse �16,25,26�. In Ref. �16�, the average velocity as a
function of time and the Poincaré surface of section of the
dynamics of the ellipse for different driving laws are studied
numerically. Depending on the driving laws and the initial
velocity of an ensemble, the integrable structure of the phase
space is more or less destroyed compared to the static case.
The velocity of the particles stays bounded in all cases, i.e.,
no Fermi acceleration occurs. The authors point out that all
conditions are satisfied in order to apply Douady’s theorem
�29�, which predicts this boundedness of the velocity. A
mathematical study of periodically driven ellipses is given in
�25�. The authors show that, in principle, it is possible to
destroy the diametral two-periodic orbit via boundary oscil-
lations, and give strong evidence that the opposite—*lenz@physi.uni-heidelberg.de
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stabilizing an unstable periodic orbit with the use of
driving—is not possible.

The above discussion shows that very little is known
about escape rates in classical time-dependent billiards.
Apart from being of fundamental interest, this type of driven
dynamical system is nowadays well within the reach of ex-
periments, as indicated above. Moreover, our investigation
will demonstrate that time-dependent billiards might provide
us with a tunable source of particles. As we shall see, the
escape rate and the velocity distribution of the escaping par-
ticles strongly depend on the driving properties, such as the
amplitude and frequency of periodic driving.

In this work, which is an extension of our recently pub-
lished Letter �30�, we focus on the driven elliptical billiard.
Its static counterpart is integrable, due to the existence of a
second constant of motion, the product of the angular mo-
menta around the foci. Thus the phase space of the ellipse
possesses a more complex structure, consisting of librators
and rotators, than the prototype integrable billiard, the circle.
Naturally, it would also be interesting to study driven bil-
liards whose static counterparts have mixed or chaotic dy-
namics. Yet the clear partition of the phase space into libra-
tors and rotators of the ellipse considerably simplifies the
analysis in the presence of the driving. This allows us to
study, e.g., transition between librator and rotator orbits and
to discuss associated physical phenomena in an intuitive
way.

This paper is structured as follows. In Sec. II we discuss
fundamental properties and escape rates in the static ellipse.
The generalization to time-dependent ellipses is treated in
Sec. III. The fundamental processes leading to the destruc-
tion of the librator orbits are displayed in Sec. III C, followed
by an analysis of the angular momentum, Sec. IV, and the
velocity, Sec. V. Finally, a summary is given in the last sec-
tion.

II. STATIC ELLIPSE

A. Fundamental properties of the dynamics in the ellipse

In a two-dimensional static billiard, the orbit of a particle
can be completely specified by providing the sequence of its
positions si �measured by the arclength� or �i �see Eq. �1�� on
the boundary B and the directions pi=cos �i immediately
after each collision, since the particles travel ballistically in
between collisions, where �i is the angle between the for-
ward pointing tangent and the velocity of the particle at the
ith collision point. The corresponding discrete mapping M is
area preserving in the phase space variables s and p �1�. The
boundary B of an ellipse is given by

B = �x��� = A cos �,y��� = B sin����0 � � � 2�� �1�

with A�B�0, A and B being the long and the short half
diameter, respectively. The dimensionless numerical eccen-
tricity can be written as �=�1−B2 /A2.

In anticipation of the time-dependent problem, we de-
scribe the direction of a particle by its velocity v= �vx ,vy�. If
we demand without loss of generality �v�=1, there is a one-
to-one correspondence between the velocity v and p at the

collision points. At a certain time t, the position of the par-
ticle starting at t=0 at x0= �x0 ,y0��B with the velocity
�vx,0 ,vy,0� is given by

x�t� = x0 + vx,0t , �2a�

y�t� = y0 + vy,0t . �2b�

The particle will hit the boundary at x1 at the time t1.

t1 = −
2B2x0vx,0 + 2A2y0vy,0

�Avy,0�2 + �Bvx,0�2 . �3�

To get the new velocity v1, we parametrize x1�B by �1 and
calculate the inward pointing normal vector n̂1 , �n̂1�=1, at �1.
This results in

v1 = v0 − 2�n̂1 · v0� · n̂1. �4�

Equation �4� can be easily extended to time-dependent
boundaries �see Sec. III�, where momentum transfer from the
moving wall to the particle takes place.

The dynamics in the ellipse is completely integrable �see
Fig. 1�. In addition to the energy, there is another constant of
motion F�� , p�, restricting the orbits to invariant curves in
phase space:

F��,p� =
p2�1 + �1 − �2�cot2 �� − �2

1 + �1 − �2�cot2 � − �2 . �5�

F�� , p� can be interpreted as the product of the angular
momenta �PAM� about the two focus points �1�. There are
two different types of orbits, rotators and librators, in the
ellipse, separated by the separatrix �see Fig. 1�. Librators
cross the x axis between the two focus points and repeatedly
touch a confocal hyperbola. In the Poincaré surface of
section �PSS�, they appear as deformed circles around ellip-
tic fixed points, exploring a limited range in p as well as in
�. Rotator orbits travel around the ellipse, exploring every
value of �, but only a small range in p �except if they are
very close to the separatrix�, repeatedly touching a confocal
ellipse.
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FIG. 1. PSS of the ellipse �upper part� and typical trajectories
�lower part�, A=2, B=1. The rotator orbit repeatedly touches a con-
focal ellipse, the librator orbit a confocal hyperbola.
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In terms of F�p ,��, we can distinguish three different
cases.

�1� F�� , p��0 corresponds to the rotator orbits with an
elliptical caustic.

�2� F�� , p��0 are the librators with hyperbolic caustic.
This includes the two elliptic fixed points at ��=� /2, p=0�
and ��=3� /2, p=0� corresponding to a period-2 orbit along
the minor axis with F�� /2,0�=−�2 / �1−�2�.

�3� F�� , p�=0 corresponds to the period-2 orbit along the
major axis with ��=0, p=0� and ��=�, p=0�, seen in the
PSS as two hyperbolic fixed points.

The topology of the PSS �Fig. 1�, is dominated by two
isolated periodic orbits. The condition for stability is, accord-
ing to Ref. �1�,

	

2R���
− 1	�0 unstable,

�0 stable,

 �6�

where R��� is the radius of curvature and 	 is the distance in
coordinate space between two successive collisions. Using
this stability criterion, we get for the periodic orbit along the
long diameter 	 /2R=1 / �1−�2��1, and therefore it is un-
stable. In contrast, the orbit along the short diameter obeys
	 /2R=1−�2�1 and is stable.

According to Ref. �16�, Poncelet’s theorem on projective
geometry can be applied to elliptical billiards �31�. It states
that all trajectories possessing the same value of F�� , p�
share the same caustic and the same type of dynamics. In the
case of periodic orbits this means that, given one periodic
orbit, with a certain value of F�� , p�, every trajectory with
the same value of F�� , p� is also periodic and has actually
the same period. Consequently, the only isolated periodic
orbits are the two discussed period-2 orbits; all the other
periodic orbits are nonisolated and form families.

B. Escape rates

Let us focus now on the escape rates of a static elliptical
billiard with a hole placed on its boundary. In this section we
use for all simulations A=2, B=1, i.e., the numerical eccen-
tricity �=�3 /2�0.87. The number N0 of particles in the
initial ensemble is N0=107. Each particle is propagated for at
most 106 boundary collisions unless it escapes earlier. The
initial conditions ��0 ,�0�i, i=1,2 , . . . ,107 �the index i stands
for the ith particle� are chosen randomly. Note that the angle
�0 is distributed uniformly in �0,��, not p0=cos �0. We
choose two different hole positions �
=0 and �
=� /2. The
hole size 
 is set to 
=0.03 �measured in ��. �
=0 corre-
sponds to a hole lying in the very right of the ellipse of Fig.
1, and �
=� /2 corresponds to the location at the very top of
the ellipse. The reason for this choice is the following. If the
hole lies at �
=0, none of the librator orbits can escape,
since their invariant curves are not connected with the hole,
whereas if �
=� /2, all orbits can participate in the decay. In
both cases, all rotator orbits can escape �as long as they are
not periodic�, since they are ergodic with respect to the phase
space variable �. The main data of these simulations are the
numbers of remaining particles in the billiard as a function of
the number of collisions N�n� or the elapsed time N�t�. Note

that we refer to N�t� as the escape rate, as is done in the

literature, whereas we will call Ṅ�t� the emission rate.
The results of the simulations are shown in Fig. 2. Two

qualitatively different behaviors of the decay are observed
for the two different hole positions: �1� If s
=� /2, the frac-
tion of remaining particles N�n� as a function of the number
of collisions approaches zero for n→�. �2� If s
=0, N�n�
approaches a saturation value Ns����0 after roughly n=2
�103 collisions.

The saturation value Ns��� in the case s
=0 is, of course,
caused by particles traveling on librators. Since the librator
orbits are not connected with the hole, these particles will
stay forever in the billiard. We will derive an exact expres-
sion for Ns��� in the next section. In both cases of the hole
position, the short-time behavior �Fig. 2� of the decay is
exponential N�n��exp�−
n� �roughly for the first 50 colli-
sions in the case s
=0 and 300 collisions in the case s


=� /2�. The decay constant 
 is approximately given by 

�
 /2� �32�. The long-time behavior �n�2�103� of N�n�
in the case s
=� /2 corresponds to an algebraic decay
N�n��n−c, seen as a straight line in the inset of Fig. 2. This
power law decay is typical for integrable systems and known
in the literature �see, e.g., Ref. �5� or �33��, but there is no
work discussing the case of the ellipse, except for Ref. �19�,
where the algebraic decay, is observed experimentally, even
though not in such detail.

A heuristic model explaining this algebraic behavior is
provided in �5�. The discussion given there holds for a rect-
angular box, where �p ·en� �en is the unit vector normal to the
opening� is a constant of motion. Nevertheless, the results
obtained there can be easily transferred to the case of the
ellipse by replacing �p ·en� by F�� , p�. According to �5�, the
fraction of remaining particles should decay for large n like
N�n��n−1. The extracted value from our data is N�n�
�n−1.02 for n�3�103, i.e., in very good agreement with the
analytical prediction.

C. Saturation value Ns„�…

Let us now study whether the escape rates depend on the
numerical eccentricity �. Indeed, the qualitative behavior of
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the decay remains unchanged; only the saturation value
Ns��� is different for different values of � for the hole at the
short side of the ellipse, s
=0. This becomes immediately
clear if one considers that � determines the degree of defor-
mation compared to the circle: Since in the circle there are
exclusively rotator orbits, Ns�0� should be zero, and with
increasing � the offset Ns��� should increase too.

The fraction of escaped particles as a function of � is
shown in Fig. 3. One can also calculate Ns��� from the fol-
lowing theoretical considerations; the result is in excellent
agreement with the numerical data points �see Fig. 3�.

All initial conditions corresponding to particles propagat-
ing on librators lie inside the area AII��� bounded by the
separatrix of Fig. 1. We denote by f���=AII��� /APSS the ratio
of AII��� and the total area APSS of the phase space:

APSS = �pmax − pmin���max − �min� = 4� . �7�

To calculate AII���, we need an analytic expression for the
curve belonging to the upper half of the separatrix, which is
a function psx���. Then this area is given by

AII��� = 2

0

2�

d� psx��� . �8�

We know that for the motion along the separatrix F�� , p�
=0. Thus, we can exploit �5� and get

psx��� = p��,F = 0� =� �2

1 + �1 − �2�cot2 �
. �9�

We see immediately that AII��� �8� depends on �, and so does
the saturation value. To obtain Ns���, we have to account for
the fact that the initial conditions are distributed uniformly in
the �, � and not the p, � space. Hence,

�sx��� = arccos�psx���� = arccos� �2

1 + �1 − �2�cot2 �
,

�10�

and as a result f����=AII� ��� /2�2, similar to �7�, and AII� ��� is

AII� ��� = 2

0

2�

d� �sx��� . �11�

The fraction of escaped particles is just 1− f�, and the satu-
ration number is

Ns��� = f���� . �12�

In Fig. 3, perfect agreement between the analytical consider-
ations presented above and the numerical simulations can be
seen. As a consequence, varying � allows us to control the
number of particles being emitted.

III. TIME-DEPENDENT ELLIPSE

In this section, we investigate the escape rates for the
time-dependent ellipse. Since the boundary transfers momen-
tum to the particles upon collisions, their energy is not con-
served any more. The collision point of a particle with the
boundary is not defined by � only, but we need additionally
the time t to make the point well-defined in coordinate space,
since the boundary B�t� depends explicitly on t. Likewise,
the direction of a particle has to be described by v= �vx ,vy�
and not just by p=cos �, since �v � �const. Representative
visualizations of the resulting 4D phase space, like the 2D
PSS for the static billiard, are difficult to achieve.

To drive the ellipse, we apply harmonic oscillations to its
boundary B�t�,

B�t� = �b��,t��� � �0,2��� , �13�

b��,t� = �x��,t�
y��,t�

� = �A�t�cos �

B�t�sin �
� , �14�

where A�t� and B�t� are given by

A�t� = A0 + C sin��t + �� , �15a�

B�t� = B0 + C sin��t + �� , �15b�

C�0 is the driving amplitude, and � is a phase shift. A0, B0,
and C have to be chosen in such a way that A�t��0 and
B�t��0 for all t. We refer to �15� as the breathing ellipse. As
already done in Sec. II, we set A0=2 and B0=1, and use
values of C between 0.01 and 0.30 only. The velocity u�� , t�
of the boundary and the numerical eccentricity are

u��,t� = ��C cos��t + ��cos �

�C cos��t + ��sin �
� , �16�

��t� =�1 −
�1 + C sin��t + ���2

�2 + C sin��t + ���2 . �17�

A. Mapping

Just as in the static case, a discrete mapping is sufficient
to characterize the full dynamics of a particle. Consequently,
the trajectory of a particle consisting of N bounces is given
by
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C = ��t0,�0,v0�,�t1,�1,v1�, . . . ,�tN,�N,vN�� . �18�

The mapping for the next collision time tn+1 is determined
implicitly by

� vx
n�tn+1 − tn� + xn

A0 + C sin��tn+1 + ��
�2

+ � vy
n�tn+1 − tn� + yn

B0 + C sin��tn+1 + ��
�2

− 1 = 0,

�19�

where, for a given tn and �n, xn and yn are calculated from
�14� and tn+1 is defined by the smallest tn+1� tn that solves
�19�. The next collision point is given by xn+1=xn+vn�tn+1

− tn�, and �n+1 can be obtained by inverting �14�. Once
�tn+1 ,�n+1� is determined, the next velocity vn+1 is given by

vn+1 = vn − 2�n̂n+1 · �vn − un+1�� · n̂n+1, �20�

where the boundary velocity un+1 is given by �16� and
the normal vector by n̂n+1= n̂n+1� / �n̂n+1� �, n̂n+1�
= (−B�tn+1�cos �n+1 ,−A�tn+1�sin �n+1)T.

The maximal velocity change of a particle upon a single
collision with the boundary according to Eq. �20� is 
�v�
= ±2�C. Thus, it can happen that the particle undergoing a
boundary collision at the time t� is not reflected, in the sense
that the sign of the velocity component normal to the bound-
ary tangent is not reversed; the particle continues traveling
outside B�t��, but of course still inside B�t� t��. This is the
case if the ellipse is expanding and un�vn�2un holds,
where vn and un are the normal components of the particle
and the boundary velocity before the collision. As a conse-
quence, the angle � between the tangent t and the velocity v
is not restricted to the interval �0,�� as it was in the case of
the static ellipse, but now �� �−� ,��. Upon such collisions
with the expanding boundary, the particles are always slowed
down, they lose energy �34,35�; whereas upon collisions with
the contracting ellipse they gain energy.

B. Escape rates

We focus on the case s
=0, in order to examine the effect
of the driving on the number of particles in the billiard. For
the static case, the saturation value was caused by the librator
orbits �see Sec. II C�. We assume that these librator orbits
will be deformed or partially destroyed by the driving, lead-
ing to a nonvanishing decay even for large times. On the
other hand, we expect no stabilization of the rotator orbits,
i.e., no deformation in a way that they will not escape. All
periodic orbits become unstable when applying the driving,
and in Ref. �25� it was concluded that it is impossible to trap
unstable periodic orbits in the ellipse via boundary oscilla-
tions. Note that this is not true in general for driven systems;
unstable periodic orbits can be stabilized by a driving force,
e.g., in the Kapitsa pendulum �36�.

We consider two different borderline cases: �v0���C
�intermediate-velocity ensemble �IVE�� and �v0���C �high-
velocity ensemble �HVE��. In the first case, the velocity has
the same order of magnitude as the boundary velocity. This
leads to a momentum transfer �maximal 2�C� of the same
order of magnitude compared to the initial momentum, and
we expect significant changes in the dynamics. In the second

case, the particles move much faster than the boundary; con-
sequently the momentum transfer will be very small, and the
dynamics will be similar to that of Sec. II. Naturally, it would
also be interesting to examine the case �v0���C. However,
the first few collisions then accelerate the particles to veloci-
ties �v���C and, after a short time, we encounter the situa-
tion of the first case. The parameters of the simulations are
N0=105, �=1, C=0.01,0.05,0.10,0.15,0.20,0.25,0.30, and
�=0. To ensure that all the particles move inside the billiard,
we let them start on the smallest ellipse �for a given C�; the
initial position �0 and the initial angle �0 are chosen ran-
domly. The initial velocity v0 is given by v0
= �cos �0 , sin �0� �IVE� and v0=100�cos �0 , sin �0� �HVE�,
respectively. The fraction of remaining particles NC�t� as a
function of time for different amplitudes C is shown in Figs.
4 �IVE� and 5 �HVE�.

First, we describe the behavior of the IVE. We observe a
short but fast decay �t�500�, followed by a transient �500
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� t�5000� in which the decay slows down; and for t
�5000, the decay is much slower than the initial fast decay
for all values of C. At t=104, the values of the fraction of
remaining particles are ordered according to the driving am-
plitudes; the lower C is, the higher is NC�t=104�, i.e., NC�t
=104� depends monotonically on the amplitude C. For t
�104, NC�t� does not stay constant, but is still decreasing.

The absolute value of the emission rate ṄC�t� is larger the
larger C is. This can be seen nicely in the double-logarithmic
plot of Fig. 4. For values of t between 104 and 105, we
encounter approximately an algebraic decay NC�t�� t−w �we
remark that this algebraic decay has been numerically shown
to exist for much longer times than illustrated in Fig. 4�,
where the decay constant w increases monotonically with
increasing C �this fact is based not only on the four values of
the driving amplitude C shown here, but on simulations car-
ried out for 20 values of C between 0.01 and 0.30�.

The subdivision of the behavior, into fast initial decay–
transition period–slow �near algebraic� decay, is even more
pronounced in the case of the HVE �see the inset of Fig. 5�.
An exponential decay for small values of t slows down at
around t�5 and the fraction of remaining particles seems to
approach a constant value. From Fig. 5, however, we see that
the fraction of remaining particles decays for t�10 roughly
according to an algebraic decay �at least for small values of
the driving amplitude� N�t�� tw, with a decay constant w. If
we compare the fraction of remaining particles at t=50 for
different values of the amplitude �inset of Fig. 5�, we see that
they are monotonically ordered according to the driving am-
plitudes. Surprisingly, most of the particles remain within the
billiard in the case of the largest driving amplitude C=0.30
and the smallest fraction remains in the case of the smallest
amplitude C=0.05. The explanation of this effect is provided
later, in Sec. IV, when we examine the dependence of the
PAM F�� , p� on the driving.

In the inset of Fig. 5, a modulation of the escape rate with
period T=2� can be seen, being exactly the period of the
applied driving law �14�. Specifically, for t�10, where all
particles starting on rotator orbits have already escaped,
NC�t��const during approximately 11 /12 �empirically ob-

served� of one period and subsequently ṄC�t��0 during a
time interval T /12 only. From this behavior, it is evident that
the ellipse operates from a certain time on as a pulsed source
of particles. These repeated intervals are centered around
points tm of maximal extension of the ellipse, tm= �4m
+1�� /2, m=2,3 ,4 , . . . . During the expansion period, domi-
nantly vertical but also horizontal processes turn librators
into rotators. The moving ellipse remains for a comparatively
long time period in the vicinity of the extremal configuration
at tm and consequently the newly created rotators escape.
Therefore, the dynamics is effectively probed during these
short time intervals centered around tm. During the contrac-
tion period, the librators are stabilized via vertical processes;

consequently ṄC�t��0 during 11 /12 of a period T.

C. Mechanisms for the destruction of the librators

In the driven ellipse, librators can escape from the bil-
liard, whereas this is not the case for the static ellipse. There

are two fundamental processes that perturb or even com-
pletely destroy the librator orbits �unprimed variables denote
the static, whereas primed ones describe the driven system�.

�1� Vertical process. The angle of incidence of a collision
does not coincide with the reflection angle because of a
change of momentum due to the motion of the boundary of
the ellipse. In phase space, the momentum then undergoes a
certain change 
p upon a collision and the particle moves
vertically in the PSS.

�2� Horizontal process. A particle that would hit the
boundary at a certain point � hits the boundary in the driven
case at ��, simply because the ellipse’s boundary has moved,
whereas p stays nearly unchanged. This corresponds to a
horizontal move in the PSS.

These processes are fundamental in the sense that every
change 
F can be decomposed �at least for small changes
�
� ,
p�� into 
F=
Fh+
Fv, where 
Fh,v denote the indi-
vidual changes caused by the horizontal and the vertical pro-
cess, respectively.

In general, these effects do not appear isolated, but a com-
bination �
� ,
p� of both will occur in a single collision. We
can compare the orbits ��i� , pi�� of the driven ellipse to the
corresponding ones of the static ellipse ��i , pi� by consider-
ing the quantity F�� , p� �see Eq. �5��. In contrast to the case
of the static ellipse where F��i , pi�=const∀ i, we have
F��i� , pi���F�� j� , pj�� �i� j� for the driven case, i.e., F is no
longer a constant of motion. The difference 
F �see Fig. 1�
upon a collision is a measure of whether a librator ap-
proaches the separatrix �
F�0� or whether it moves in
phase space toward the position of the elliptic fixed points
�
F�0� of the static case. An increase with respect to F
reflects the dependency of “moving” in phase space from
confined librator to escaping rotator orbits.

1. Vertical processes

To isolate this effect, we examine a particle that hits the
boundary at �=� /2 under a certain angle � in the static
case. The velocity of the particle can be written as v0
= �−v cos � ,v sin ��, v= �v0�. In the driven ellipse, we will
assume that the particle hits the boundary in the neutral po-
sition �A�t�=A0 ,B�t�=B0�, so we have ��=�=� /2, ⇒ 
�
=0. The boundary velocity u�� , t� of the ellipse is maximal
at this configuration and has a vertical component only, un
=uy = ±�C, depending on whether the ellipse is expanding
“�” or contracting “�.” The velocity of the particle at the
next collision in the static case is v1= �−cos � ,−sin ��T and
hence p1= p0=cos �. The corresponding velocity in the
driven case is v1�= �−v cos � ,−v sin �±2�C�T. Now, p0�= p0

�p1�, since

�21�

If the ellipse is contracting �� sign in the factor f�, p1�
=cos � / f is smaller than p1=cos � because f �1, i.e., 
p
�0 �p1�= p1+
p�. In phase space the particles moves toward
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the elliptic fixed points, which does not lead to the destruc-
tion of the librators. If the ellipse is expanding �� sign in the
factor f�, 
p will be larger than zero if f �1. This is equiva-
lent to

sin � �
�C

v
, �22�

and since vn=v sin � and un=�C Eq. �22� is equivalent to
vn�un, which is a necessary condition for a collision to take
place. If additionally to Eq. �22� sin ��2�C /v, then vn
=vy �0 and thus ���0 �see Fig. 6�; the particle is not re-
flected in the sense that the sign of vn is not reversed. For
sin ��2�C /v, it follows that vn=vy �0; the particle is re-
flected. In both cases 
p�0, the particle moves toward or
even beyond the separatrix; in the latter case, the librator has
changed into a rotator. This process can therefore lead to the
destruction of the librator orbits. In Figs. 6 and 7, the process
is shown in coordinate as well as in phase space. This pro-
cess happens for any value of �; nevertheless, the case �
�� /2 is especially important for two reasons: �1� The abso-

lute value of the change 
p is largest for cos ��sin �; for
particles on librators this is approximately true if ��� /2.
�2� For a constant 
p, the corresponding 
F�� , p� is largest
for �=� /2, because the vertical spacing of the invariant
curves is smallest at �=� /2. Consequently, the horizontal
processes that contribute the most to changing a librator into
a rotator occur mainly around ��� /2 �and ��3� /2 be-
cause of symmetry�.

2. Horizontal processes

We consider a particle that starts moving in a static ellipse
corresponding to the smallest possible ellipse �given a cer-
tain amplitude� in the driven case, hitting the boundary of
this static ellipse at �=� /2 under a certain angle � �see Fig.
8�. We choose all the parameters such that the particle will
hit the boundary of the driven ellipse at the time t� at the
position ����, when the boundary B�t�� has its maximal
extension. The new angle �� is approximately equal to � �see
Fig. 8�. This rough estimate becomes better with increasing
� and decreasing distance between the two ellipses; thus

p�0, i.e., the particle moves horizontally in the PSS �see
Fig. 9�. To calculate �� or 
� as a function of C and � is
very tedious and the exact result is not very helpful. We
therefore restrict ourselves to an approximation and linearize
the boundary of the ellipse locally at �=� /2. The collision
point on B�t� is

�� = arctan
y

x
� arctan

�2 + C�tan �

2C
. �23�

In general, we have to respect the sign of x and y to obtain ��
from �23�. �
��= ���−�� depends sensitively on � and de-
creases with increasing �. �
�� is largest for ��� /2, since
� there reaches its minimal value for the librator orbits. The
sign of the corresponding change 
F depends on the sign of

� and the quadrant in which � lies �e.g., for 
��0, 
F
�0, if � lies in the second or fourth quadrant�. There is no
obvious region with respect to � where the destruction of the
librators mainly occurs, since two opposite effects balance
each other: �1� The absolute value of the change �
�� is

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

1.05

1.1

X

Y

tangent

ellipse boundary

incoming particle

reflected particle
contracting ellipsereflected particle

static case

reflected particle
expanding ellipse
v

y
< 0

reflected particle
expanding ellipse
v

y
> 0

α

FIG. 6. Vertical process in coordinate space.

φ

p
=

co
s

α

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8
δ p >0

δ p<0
δ p>0

δ p<0

(φ = π/2, p)

(φ,p)

FIG. 7. Vertical process in phase space.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X

Y

biggest extension
smallest extension

incoming particle

tangent

tangent

α

α’ ≈ α

(φ = π/2, p)

(φ’≠π/2, p’≈ p)

(φ, p)

(φ’ ≈ φ, p’≈ p)

FIG. 8. Horizontal process in coordinate space.

CLASSICAL DYNAMICS OF THE TIME-DEPENDENT … PHYSICAL REVIEW E 76, 066213 �2007�

066213-7



largest for ��� /2. �2� Given a certain 
�, the correspond-
ing changes 
F increase with increasing distance between �
and � /2, because the horizontal spacing of the invariant
curves is smallest there �see Fig. 9�. Nevertheless, the posi-
tion �=� /2 �and �=3� /2� is in a way exceptional: any
change 
�, independent of the sign, results in a change

F�0, leading to a destruction of the librators.

D. Qualitative model of the decay

We isolated two processes that are able to change F�� , p�
in the course of the dynamics. Particles on librator orbits are
scattered upon boundary collisions either toward the elliptic
fixed points or toward or even beyond the separatrix. For a
single particle, such a scattering process happens at every
collision, and the effective change 
F after a certain time
depends on the sequence of these processes; hence 
F
=
F1+
F2+ ¯ +
Fn after n collisions. This effective
change in F�� , p� is very difficult, if not impossible, to pre-
dict, since each individual change 
Fi depends on four pa-
rameters already: �1� the absolute value �vi� of the particle
velocity, �2� the angle �i of the velocity with the boundary,
�3� the location �i of the collision point on the boundary, and
�4� the time ti which determines the position of the boundary
and the boundary velocity ui�t1� of the ellipse �these four
parameters are of course just the variables of the four-
dimensional discrete mapping; see Sec. III A�. Now we con-
sider not only a single particle, but an ensemble of N par-
ticles with initial conditions �� j ,v j�, j=1,2 , . . . ,N. The
effective change �
F� j �where the index j indicates the jth
particle� after n collisions can vary significantly from particle
to particle, since the sequence of these four parameters will
be very different for each individual particle. Each of the N
sequences is governed by applying the discrete mapping of
Sec. III A n times on each initial condition �� j ,v j�. The un-
derlying nonlinear dynamics of this discrete mapping and the
fact that all particles start from different initial conditions
lead to such unique sequences, and will consequently cause
large fluctuations in the effective 
F and accordingly large
fluctuations in quantities that depend on F�� , p�. In the fol-

lowing, a qualitative explanation of the escape rates NC�t�
�decay� of the IVE and the HVE is given.

We focus on the HVE first. The initial fast decay of the
number of particles �t�5� is due to the rotator orbits that are
connected with the hole and escape very rapidly. Addition-
ally, some of the particles starting on librator orbits near the
separatrix F�0 contribute. The longer-time decay �t�10� is
caused by particles starting on librators that have been scat-
tered across the separatrix. The closer an orbit of a particle
lies to the elliptic fixed points, the longer it takes until the
effective change 
F is big enough to reach the separatrix
�F=0�. From Eqs. �21� and �23� it follows that the individual
changes 
Fi under a single collision increase with increasing

amplitude C. This explains the increasing emission rate ṄC�t�
with increasing C, since at a given time t the number of
particles that can participate in the decay is larger for larger
values of C. The decay in the transient region �5� t�10� is
caused by a superposition of the tail of the initial fast decay
�roughly exponential� and the onset of the slow �roughly
algebraic� decay.

With very similar arguments, the decay of the IVE can be
explained qualitatively. Since the velocity of the particles
and the velocity of the boundary are of the same order of
magnitude, the changes 
F are much larger compared to
those of the HVE. This leads to a very early onset of the slow
�algebraic� decay; consequently the transient region is broad-
ened.

IV. ANGULAR MOMENTUM

To validate the qualitative model of Sec. III D, we inves-
tigate the PAM F�� , p� further. The contours of F�� , p� are
shown in Fig. 1; depending on the initial value of F, particles
move on rotator or librator orbits �see Sec. II A�.

Throughout the following sections, we analyze properties
such as the escape time for an ensemble of particles possess-
ing certain initial distributions in, e.g., phase space or the
PAM F. We emphasize that in the case of the distribution of
the F values we always refer to the initial distributions of F
at t=0 �37�.

A. Escape time versus initial conditions in phase space

As an example, the escape time as a function of the start-
ing points in phase space is shown in Fig. 10 �C=0.10, IVE�,
i.e., we assign to each initial condition ��0 , p0� �105 particles�
an escape time. Large values of the escape time correspond
to initial conditions belonging to librator orbits lying around
the elliptic fixed points at ��=� /2, p=0� and ��=3� /2, p
=0�. On the other hand, initial conditions corresponding to
small values of the escape time lie around areas that corre-
spond to the rotator orbits. Overall, the results of Fig. 10 are
in good agreement with our predictions of Sec. III D, where
we derived large escape times for particles with initial con-
ditions close to the two elliptic fixed points and short escape
times for particles starting on librator orbits.

B. Escape time versus initial angular momentum

In this section, we investigate the escape time tesc versus
the initial angular momentum F��0 , p0� of the corresponding
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ensemble of particles in phase space for different amplitudes
C. We consider escaped particles only.

The results for the IVE are shown in Fig. 11. For small
escape times tesc�10, there is a narrow, serpentine chain in
which all the pairs �tesc ,F� lie. Only pairs with F�0 corre-
sponding to rotators occur for tesc�10. We will explain this
below in the course of the discussion of the HVE. Apart from
this narrow, serpentine chain, the values of the escape times
for F�0 are scattered mainly over a rectangular area with
10� tesc�104. This area becomes wider in t with increasing
C: 10� tesc�103 corresponds to C=0.01 and 10� tesc�104

corresponds to C=0.10. These are the particles that are asso-
ciated with the initial fast decay. The widening of this area
can be explained with our model from Sec. III D. In the case
C=0.01 �inset of Fig. 11�, the particles with F�0 escape,
similarly to the static case with an exponential rate, and after
a certain time, e.g., tesc�1000, most of them have escaped.

Consequently, the algebraic decay establishes itself �see Fig.
4�. With increasing amplitude, horizontal and vertical pro-
cesses lead to larger changes 
F. Due to multiple separatrix-
crossing scattering the available range in the time t to escape
clearly becomes larger. The appearance of rather high densi-
ties at F�0.9 and F�0 in Fig. 11 and at F�1 in the inset is
explained below, in Sec. IV C.

For values of F�0, corresponding to librator orbits, the
values of the escape time are grouped in an inclined band,
i.e., for smaller values of F, the escape time is on average
higher. In the case C=0.01, the band stops at F�−0.20;
orbits with smaller initial values of F just did not escape until
5�104 collisions were reached. For C=0.10, this band cov-
ers almost the hole range in F, due to the larger driving
amplitude and the larger effective changes 
F.

In Fig. 12, the results of the HVE are shown. We can
match perfectly the exponential short-time behavior and the
algebraic tail with the two major areas in the picture. All
particles with initial values F�0, corresponding to rotator
orbits, have escape times of tesc�10, whereas particles on
librator orbits with initial values of F�0 possess escape
times tesc�10. Due to high particle velocities, the effects of
the horizontal and vertical processes are rather small; it takes
around t�10 �corresponds to approximately 500 collisions�
until the first librators are destroyed. Up to 2.5�104 colli-
sions, only particles with F�0 escaped �C=0.05�, whereas
for C=0.25 particles with F�−0.5 decayed.

For values F�0 and tesc�10 horizontal, narrow layers
can be observed in Fig. 12. The vertical spacing of these
layers is 2�, which is again the period of the breathing el-
lipse. The mechanism at work is the previously mentioned
one �Sec. III B�: When the ellipse is expanding, librators are
turned into rotators, which can then escape, whereas during
the contraction period, the rotators are stabilized.

As an example, the average escape time as a function of
the initial value of F is shown in Fig. 13 for C=0.10 and the
IVE. Starting from F around −2, the escape time is decreas-
ing with increasing F, until the separatrix �F=0� is reached.
For values of F bigger than zero, corresponding to rotators,
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the escape time stays approximately constant. Nevertheless,
the escape time for a single trajectory with a certain initial
value F can deviate significantly from the curve shown in
Fig. 13, since the standard deviation, also shown in Fig. 13,
is quiet large, especially for values of F�0.

C. Density distributions of the escaping/ and nonescaping
PAM

The choice of the initial conditions described in Sec. III B
leads to an amplitude-dependent, nonuniform distribution in
the density 	(F��1 , p1�) after the first collision at ��1 , p1�. In
Fig. 14, the density distribution of the initial values of
F�� , p� for C=0.01 and 0.10 is shown �IVE�. The three dif-
ferent curves in each of the figures correspond to the initial
�t=0� �37� density distribution of F�� , p� of the whole en-

semble, to the initial density distribution of F for the escaped
particles, and to the density distribution of F for the remain-
ing �i.e., nonescaped� particles:

	all�F0� = 	rem�F0� + 	esc�F0�, 

Fmin

Fmax

	�F0�dF0 = 1.

�24�

If we compare these figures with Fig. 11, there is a perfect
correspondence between the peaks of the initial density dis-
tribution of F�� , p� and the high-density regions in Fig. 11,
i.e., the high-density regions are due to the nonuniformity of
the distribution of the initial values of F.

With increasing amplitude, the available range of initial
values of F still making to an escape of the particles possible
becomes larger; for C=0.01 only particles with F0�−0.3
escaped, whereas for C=0.10 already particles with initial
F0�−2.4 escaped.

The results for the HVE are very similar �see Fig. 15�.
The main difference is that, due to the small effect of a single
scattering process, the transition between escaping and non-
escaping particles in F space is much sharper and shifted
toward higher values of F compared to the IVE. Further-
more, the density distribution of the initial values of F ex-
plains the reverse ordering of NC�t=50� observed in Sec.
III B. For C=0.05, due to our definition of the initial en-
semble at the innermost ellipse boundary, there are many
more particles with initial values F�1 than in the case C
=0.25. Overall, the fraction of particles starting on rotator
orbits in the case C=0.05 is larger than in the case 0.25, and
these rotators will escape fast.

V. VELOCITY

In the static ellipse �see Sec. II�, there are two constants of
motion. One is the product of the angular momenta around
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the two focus points F�� , p�, which we just studied in the
context of the driven ellipse in the previous section; the other
is the energy. Since the potential is constant inside the el-
lipse, it is sufficient to consider the kinetic energy only. The
energy of a single particle in the ellipse is given by Etotal
=Ekin=mv2 /2. Energy conservation in the static ellipse thus
means �v � =const. Since all particles have the same mass it is
sufficient to consider �v� instead of Etotal.

When examining F�� , p�, it is instructive to calculate F
from the initial conditions ��0 , p0�. Doing the same in the
case of the velocity �v�t�� is meaningless, since we know
�v�0��=1 �IVE� or �v�0��=100 �HVE� for all particles. In-
stead, we consider the velocity of the particles when they are
actually escaping, i.e., �v�tesc��, the escape velocity.

A. Escape velocity versus escape time

In Fig. 16 distributions of escape times as functions of the
escape velocity are shown for C=0.01 and 0.10. A point for
every pair (�v�tesc�� , tesc) is plotted in the plane and only es-
caped particles are considered �IVE�. At �v�=1, there is a
vertical line for t�4. This line corresponds to the particles
that escape from the billiard without a single boundary col-
lision and thus possess an unchanged energy. For times t
�102, the pairs (�v�tesc�� , tesc) lie on a narrow serpentine
band. The vertical spacing, i.e., the period of the band, is
approximately 2�, which is the period of the driven ellipse.
The band structure is much more pronounced in the case of
the HVE �see Fig. 17�, where it dominates the overall distri-
bution, naturally emanating from �v�=100. This correlation
between the escape time and the escape velocity for small
values of tesc can be explained in the following way. The
ellipse starts at t=0 from its neutral position with an expand-
ing motion. As long as the ellipse is expanding, each time a
particle hits the boundary it loses energy and its velocity is
reduced. Since the particles move very fast compared to the
motion of the boundary �HVE�, they accumulate a lot of
collisions until the ellipse reaches its maximal extension and

starts contracting. The more collisions a particle cumulates
during the expansion period, the bigger is the total energy
loss. The ellipse reaches its turning point at t=� /2, i.e., ev-
ery particle with an escape time tesc�� /2 will have an es-
cape velocity �v�tesc��� �v0�=100. From t=� /2 on, the cor-
responding escape velocities will increase until tesc=3� /2 is
reached, since the ellipse is contracting during this time pe-
riod and every collision with the boundary will increase the
energy of the reflected particle. This process is continued
until all rotators have escaped, which is the case at t�10.
This explanation holds for the HVE. Since in the case of the
IVE the particle velocities are similar to the boundary veloc-
ity, this effect is much less pronounced. Nevertheless, it is
still visible and mainly due to orbits with initial values F
�1, since these orbits skip along the ellipse, accumulating
many boundary collisions within a short period of time. The
main difference between the distributions of the escape time
for the two ensembles investigated above is that in the case
of the HVE all rotator orbits lie on the serpentine band,
whereas in the case of the IVE only rotators far away �F
�1� from the separatrix contribute.

For intermediate times 102� tesc�103 �IVE�, the corre-
sponding escape velocities lie closely around one for C
=0.01 �see Fig. 16�. Since the driving amplitude is very
small in this case, the energy of the particles is not much
changed. For larger escape times, the values of �v�tesc�� are a
little bit more scattered, since the particles accumulated sev-
eral boundary collisions, resulting in an effective change of
�v�tesc��; still, the values deviate no more than 10% from the
the initial value �v�=1. As expected, the distribution of the
values of �v�tesc�� is broadened for larger values of the driv-
ing amplitude C �see inset of Fig. 16 �C=0.10��, but the
energy gain remains bounded, �v�tesc���3 even for C=0.30
�not shown here�.

In the HVE, for escape times higher than 10, correspond-
ing to particles starting originally on librator orbits, almost
all escape velocities are smaller than the initial velocity
�v0�=100. Horizontal and vertical processes can scatter a par-
ticle moving on a librator orbit onto a rotator orbit �and vice
versa�, which is a necessary condition for escaping. In which
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direction �toward or away from the elliptic fixed points� a
particle is scattered depends on many parameters �see Sec.
III C�, but at least the vertical process scatters particles dur-
ing the expansion period of the ellipse always toward rotator
orbits. As a consequence, particles that turn from librator into
rotator orbits accumulate collisions that effectively reduce
their velocity and scatter them beyond the separatrix, thereby
explaining the low escape velocities of particles with escape
times tesc�10. One might think of using this mechanism to
slow down particles.

B. Distributions of the escape velocities

In Fig. 18, the distribution of the escape velocities is
shown for different values of C �IVE�. With increasing am-
plitude, the mean escape velocity ��v�tesc��� is shifted toward
larger values. Since on average there are slightly more colli-
sions with the contracting ellipse than with the expanding
one, a larger driving amplitude leads to an increased mean
energy of the particles. The sharp peak at �v�=1 corresponds
to the particles that leave the billiard without a single colli-
sion with the boundary; thus �vesc�= �v0�=1.

In the case of the HVE �see Fig. 19�, the distribution
looks quite different. The majority of the particles have an
escape velocity smaller than �v0�=100, and especially at the
lowest accessible escape velocity �vesc��97 there is a large
peak. This is due to the fact that the ellipse starts with an
expanding motion which deprives the particles of energy
upon boundary collisions, and a large fraction of particles
decays during that first expansion period. Around t=� /2, in
the vicinity of the first turning point, the ellipse stays com-
paratively long �boundary velocity �0�, and more particles
escape, leading to the large peak at �v��97. The asymmetric
shape of the distribution is additionally reinforced since the
librators that escape also have low energies. The particles
that have not escaped after 2.5�104 accumulated collisions
during the expanding and contracting motion of the ellipse
and the fluctuations in the energy transfer lead to a roughly

uniform distribution. The distributions for higher values of C
look very much like the one shown in the case C=0.05,
except that they get wider with increasing amplitude.

Since most of the particles leaving the ellipse have veloci-
ties smaller than �v0�, the question arises whether the billiard
could be used for systematic velocity lowering. To enforce
this effect, one could try, e.g., to choose asymmetric driving
laws. We point out that the lowered energy of the escaping
particles is a feature of the dynamics of the ellipse. In general
�concerning other geometries�, particles are more likely to
strike a contracting than a receding boundary, which leads
one to expect increased energies of the escaping particles.

VI. CONCLUDING REMARKS

We investigated the classical dynamics of the static and
especially the driven elliptical billiard with an emphasis on
the escape rate of an ensemble of particles. As predicted in
Ref. �5� in a general context for integrable billiards, we
found an algebraic decay in the long-time behavior of the
static ellipse, due to the integrable structure of the underlying
dynamics. Besides the energy, the product of the angular
momenta F�� , p� about the two foci is preserved. The sign of
the initial value of F determines whether a particle moves on
a rotator or librator orbit and only the rotators are always �for
all hole positions� connected with the hole. Consequently, the
decay approaches a saturation value Ns���, which is maximal
for the hole lying at the short side of the ellipse; at this hole
position none of the librators are connected with it. Ns���
depends on the numerical eccentricity � of the ellipse, and
we predicted this dependence very accurately from theoreti-
cal considerations. As a consequence, varying � allows us to
control the number of emitted particles.

When applying harmonic boundary oscillations, neither
the energy nor F�� , p� will remain a constant of the motion.
We performed numerical simulations for two different en-
sembles, representing the two important borderline cases:
first, the intermediate-velocity ensemble, where �v0���A
��A being the boundary velocity�, and second the high-
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velocity ensemble, where �v0���A. In both cases we ob-
served an initial fast decay with an ensuing transition period,
followed by a nonvanishing �even for large times� near-
algebraic decay. The emission rate depends monotonically on
the driving amplitude. The changes of F�� , p� of particles
upon a single collision with the boundary are much smaller
in the case of the HVE, due to the high velocities of the
particles. As a consequence, the resulting decay is similar to
that of the static system. The observed disappearance of the
saturation value in both ensembles is due to the gradual de-
struction of the librator orbits caused by two fundamental
processes: The vertical processes, where upon collision mo-
mentum normal to the boundary is transferred, making
changes in the sign of F�� , p� possible; and the horizontal
processes where the particle hits the ellipse due to the bound-
ary motion at a different position �compared to the static
case�, leading again to changes in F�� , p� that can result in
the transition of a librator into a rotator. Just as in the static
system, particles starting on rotator orbits �F��0 , p0��0�
cause the initial fast decay. With increasing time, more and
more particles with initial conditions closer and closer to the
elliptic fixed points can escape, due to the vertical and hori-
zontal processes just described, and cause the nonvanishing
emission rate in the long-time behavior of the decay. We
confirmed this strong connection between the escape time
and F��0 , p0� by analyzing this quantity carefully. In the

HVE, the escape rate as well as correlations of the escape
time and the PAM are modulated with the same period as the
breathing of the ellipse; the ellipse acts as a pulsed source.

Concerning escape velocities, an astonishing feature is
observed in the case of the HVE: the distribution of the es-
cape velocities is highly asymmetric and particles escape
mainly with �v�tesc��� �v0�; the driven ellipse could be used
for systematic cooling. To avoid escape velocities bigger
than �v0�, the use of a point source as an initial ensemble
seems reasonable. Simulations with thermal ensembles sug-
gested the ellipse as a state transformer; thermal ensembles
were changed into nonthermal ones. Furthermore, the ellipse
could be used as a controllable source of particles: if a cer-
tain emission rate is required, this can be achieved by tuning
the driving amplitude, whereas the numerical eccentricity �
of the static ellipse allows us to emit a certain number of
particles.
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